Reliable and safe electric power is the heartbeat of modern society. Anyone who has lost power for a significant amount of time knows how much it can upend life, from food spoiling without proper refrigeration to being unable to work because essential equipment can’t be powered on.
Mojdeh Khorsand Hedman, an assistant professor of electrical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, and her doctoral student Zahra Soltani have developed an algorithm to reduce the impact of power outages and malfunction damage to devices connected to the power grid.
“This technology enhances situational awareness, which is key for improving power system resilience,” Khorsand Hedman says.
Having power grid situational awareness means knowing the current status of three power grid parameters: network connectivity, referred to as breaker or switch status; the system state, which is the current voltage and power level flowing through the grid; and the location of outages affecting the grid.
Currently, situational awareness technology uses two software modules to measure these parameters. One module verifies topology information that indicates which medium voltage lines, used for power distribution to customers, are live, reflecting network connectivity and switch status. The other module determines system state.