While science fiction movies depict robots moving freely on their own, sometimes running to avoid perilous explosions or collapsing buildings, today’s technology doesn’t have that capability — yet.
However, Ying-Cheng Lai, an ASU Regents Professor of electrical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, his doctoral students and two collaborators from the U.S. Army DEVCOM Army Research Laboratory have moved fantasy one step closer to reality with their new method for programming robots’ movement.
Lai led a research team in the use of reservoir computing, a type of machine learning, to program a robot to move two arms on a 2D plane in a computer simulation. This method allows the robot to change trajectory between predefined paths with only partial knowledge of the surrounding environment.
“The innovative aspect of this approach lies in its capacity to operate effectively with only partial observation of the state of the system, in contrast to the traditional requirement of comprehensive knowledge about the robot and its environment,” Lai says. “It is akin to attempting to solve a jigsaw puzzle by focusing solely on a few pieces rather than the complete image.”