Course (Catalog) Description:
Lecture. Technical Elective.

Prerequisite: EEE 203
Prerequisite or Co-requisite: EEE 350.

Supplemental Materials:

Coordinator: Martin Reisslein, Professor

Prerequisites by Topic:
1. Basic knowledge of electrical circuits and systems. Elementary probability and random variables

Course Objective:
1. Students will be able to identify and relate the fundamental components of a communication network

Course Outcomes:
1. Students are conversant with the requirements and the protocols employed in the fundamental components in a communication network.
2. Students can analyze the impact of functional parameters in protocol design.

Course Topics:
1. Overview of Computer Networks and the Internet.
 - ISPs and Internet Backbones
 - Delay and Loss in Packet Switched Networks
 - Protocol Layers and Their Service Models
 - Networks under Attack
 - Internet History
2. Application Layer Protocols
 - Basic Principles
 - The Web and HTTP
 - FTP
 - SMTP
 - DNS
 - Overview of Socket Programming
 - Content Distribution and Peer-to-Peer Networking
3. Overview of Transport Layer Services
 - Multiplexing and Demultiplexing
 - Connectionless Transport: UDP
 - Principles of Reliable Data Transfer
Connection-Oriented Transport: TCP
Principles of Congestion Control
TCP Congestion Control

4. Overview of Network Layer and Routing
 Routing Principles
 Hierarchical Routing
 IP
 Routing in the Internet
 Router Architecture

5. Overview of Link Layer
 Overview of Error Detection and Correction
 MAC
 LAN Addresses, ARP
 Ethernet
 Hubs, Switches

6. Wireless and Mobile Networks
 Wireless Links and Network Characteristics
 WiFi: 802.11 Wireless LANs

Computer Usage: Students review and practice key course concepts through web-based applets, e.g., the applets provided as supplementary materials with the course texts. Students also engage with online tools to explore Internet behaviors, e.g., with online traceroute interfaces for investigating delays in the Internet.

Laboratory Experiments: None.

Course Contribution to Engineering Science and Design:
This course teaches engineering science and design by providing students with a basic understanding of the building blocks and mechanisms that make the Internet work. Students gain the opportunity to design small components of the networking protocol stack, such as a reliable packet transfer protocol and evaluate its performance through mathematical analysis. This course affords students also the opportunity to practice the modeling of networking mechanisms. For example, students need to make sensible approximations and simplifications to obtain performance results for otherwise mathematically intractable networking configurations and protocols. Students have also the opportunity to design local area networks, for instance the layout of a campus network. This design problem involves choosing the appropriate networking technology subject to user requirements and cost constraints.

Course Relationship to Program Outcomes:
a,e: Engineering and math background and problem solving abilities. Students can define a networking problem with appropriate consideration of context and constraints, and can recognize appropriate solutions. Students can develop models appropriate to a given networking problem using assumptions, estimates, and approximations guided by good engineering judgement.
c: Analysis of properties of communication systems
k: Our graduates are capable of using contemporary methods and tools for the design and evaluation of communication networks.
People preparing this description and date of preparation: Martin Reisslein, February 2015.