Pathways Presentation: Physical electronics and photonics (formerly Solid-State Electronics)

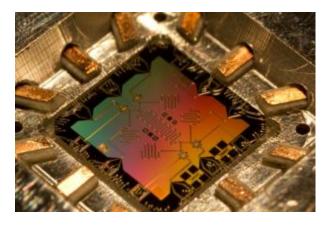
Trevor Thornton Director, ASU NSF NNCI Program Professor, School of Electrical, Computer and Energy Engineering Arizona State University Tempe, Arizona 85287 Tel: 480-965-3808 Email: <u>t.thornton@asu.edu</u> NNCI: <u>http://www.nnci.net/</u> Yong-Hang Zhang Director, ASU NanoFab & Center for Photonics Innovation Professor, School of Electrical, Computer and Energy Engineering Arizona State University Tempe, Arizona 85287 Tel: 480-727-1245 (ERC 117) Email: <u>yhzhang@asu.edu</u> ASU NanoFab web: <u>https://engineering.asu.edu/nanofab/</u> MBE group web: <u>http://asumbe.eas.asu.edu</u> CPhI web: <u>http://photonics.asu.edu/</u>

Total of 33 faculty members (7 of them work in multiple areas)

U.S. News & World Report

- #37 Undergraduate Program [22nd among public institutions]
- #42 Graduate Program [23rd among public institutions]
- #27 Electrical Engineering Graduate Program

David Allee* Hugh Barnaby* Mariana Bertoni Jennifer Blain Christen* Yu Cao* Junseok Chae* David Ferry Gennady Gildenblat **Stephen Goodnick** Michael GorvII Zachary Holman Christiana Honsberg Michael Kozicki **Richard Kiehl** Richard R. King Ying-Cheng Lai


Cun-Zheng Ning George Pan* **Stephen Phillips** Marco Saraniti **Brian Skromme** Meng Tao Nongjian Tao **Trevor Thornton** Dragica Vasileska Chao Wang Yu Yao Hongbin Yu Hongyu Yu Shimeng Yu* Yong-Hang Zhang Yuji Zhao

Physical Electronics: The science and technology of materials, devices and systems that involve the control of electrons

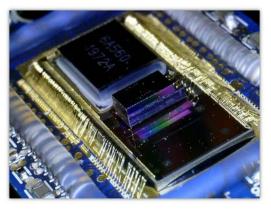
Vacuum tubes (pre-solid-state)

First transistor

VLSI Integrated circuit

UNIVAC mainframe

Mac 128k


Apple MacBook Air

Photonics: The science and technology of generating, controlling, and detecting light waves and photons, which are particles of light

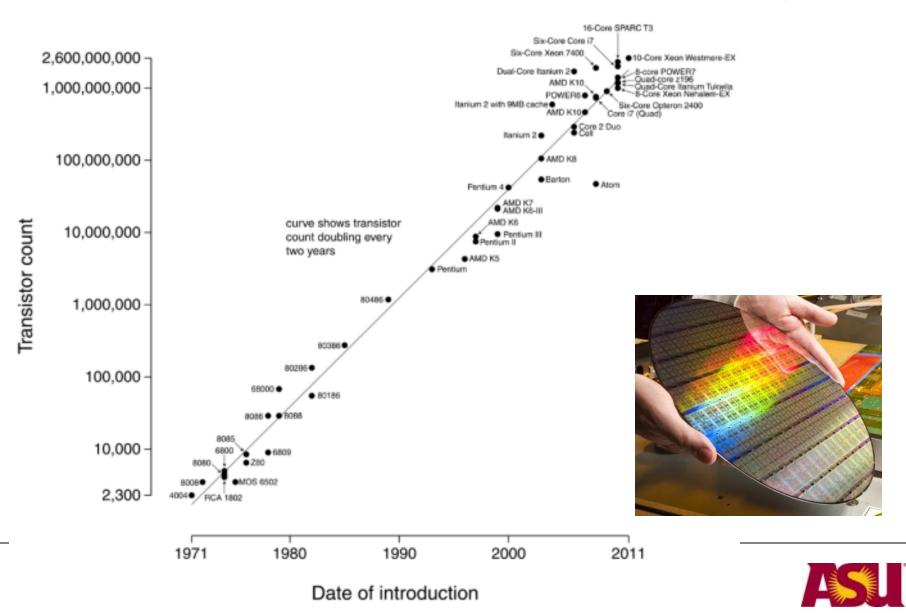
LEDs and Lasers

Integrated Photonics

Solar cells

Modules

Fiber Communications



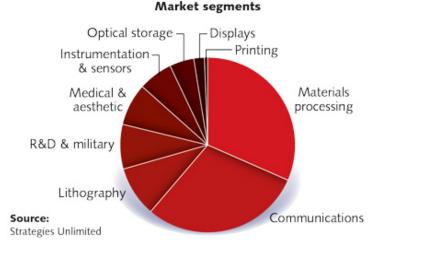
Optical network

Transistor production

• Transistor number/chip has increased from 1 to 10⁹ in 40 years!

Semiconductor Industry Market

Worldwide Semiconductor Market Product Breakdown (2015)

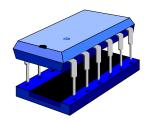

Integrated Circuits - \$274.5B Discretes & Opto \$60.7B								isors Opto	
Digital - \$229.3B						Analog \$45.2B		Discretes	Opto
	MOS - \$229.3E			3	Genera Purpose 18.6B	App. Specifi \$26.68	\$18.68	\$33.38	
Memory	y - \$77.2B	Micro - \$61.3B		Logic - \$90.8B					
DRAM \$45.0B	Flash \$30.4B	MPU \$43.3B	MCU \$15.5B	Special Purpose Logic \$70.28	Standard Logic \$20.6B	source. wars			

http://www.semi.org/en/semiconductor-market-2015-performance-2016-forecast-and-data-make-sense-it

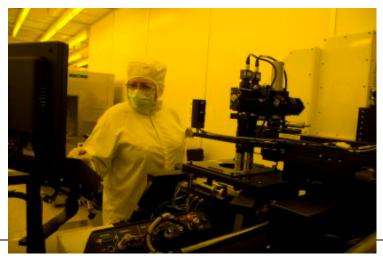
Photonics Market

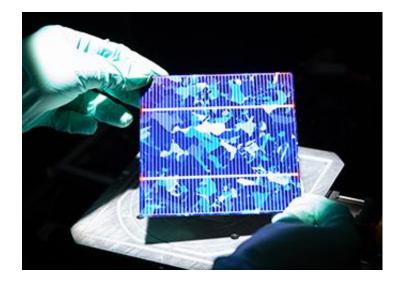
- The global photonics market size, which was \$452 Billion in 2015, is estimated to reach \$724 Billion by 2021, at a CAGR of 8.4% between 2016 and 2021
 - Worldwide laser sales forecast: 4.2% growth in 2016 to nearly \$10.5 billion
 - » Material processing (\$4.26B)
 - » Communication and optical storage (\$3.5B)
 - » Scientific research and military (\$886M)
 - » Medical and aesthetic (\$859M)
 - » Instrumentation and sensors (\$675M)
 - » Entertainment, displays & printing (\$307M)

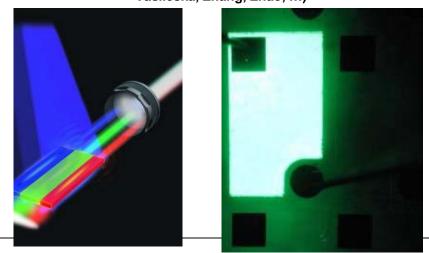
Laser revenues and 2016 forecast


http://www.marketsandmarkets.com http://www.laserfocusworld.com

Semiconductor Electronics and Photonics


- Electronic systems are driven by semiconductor chips
- These chips perform analog and digital circuit functions
- Semiconductor chips contain semiconductor devices
 - Semiconductor devices have to be
 - Designed, fabricated, measured, modeled, marketed, and sold
- Need to know:
 - Device physics
 - Circuit design
 - Fabrication techniques
 - Modeling
 - Measurements


Faculty and their research in our area


Electronic and Photonic Materials (Zhang, Zhao, Bertoni, Honsberg, Yu, Ning, ...)

Nanofabrication facility (Thornton, Kozicki, Chae, Wang...)

World-class solar research (Bertoni, Bowden, Goodnick, Holman, Honsberg, King, Tao, Vasileska, Zhang, Zhao, ...)

Lasers and nitride LED (Ning, Zhao, Yu, ...)

Semiconductor Industry

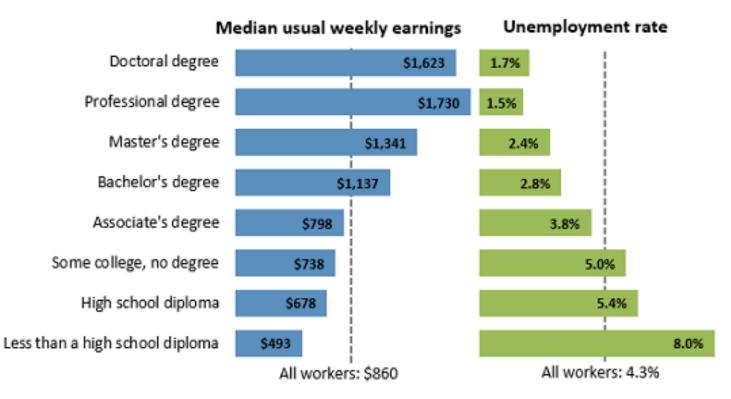
What do engineers in the semiconductor industry do?

- Circuit design
 - Design and lay out circuits to be manufactured
- Simulation/modeling
 - Simulate semiconductor device, circuit, and systems behavior (simulation is faster and cheaper than manufacturing)
- Fabrication
 - **Fabricate these circuits, maintain yield**
- Measurement/characterization
 - Characterize the performance of the devices/circuits/chips
- Sales/marketing
 - Sell and market devices, chips, systems, equipment, services

Job Opportunities

- Electronic Device, IC and System Manufacturers
 - Freescale, On Semiconductor, Intel, Microchip, Micron
 - Texas Instruments, National Semiconductor,
 - ST Semiconductors, Global Foundries, Infineon
 - IBM, HP, Dell, Apple
- Photonics industry
 - Lumileds, CREE,
 - First Solar, SunPower, Boeing-Spectrolab, SolAero, Solar Junction
 - Emcore, Finisar, Luxtera, Intel, Infinera, NeoPhotonics, Oclaro
 - nLight, Trumpf Laser, Coherent, IPG Photonics
 - Raytheon, Boeing, Lockheed-Marin, Northop Grumman, HRL
- Equipment Manufacturers
 - Applied Materials, KLA/Tencor, Lam, ASM
 - Chemical Cos., Digital Instruments
 - Agilent, Keithley, Newport
- Services
 - Companies producing simulation software, other services

Graduate school?


♦ BS

- Entry-level degree
- For technical work you'll be at the lower end of the range of engineers
- For less technical work, good
- ♦ MS
 - Good degree
 - Valued by industry
 - More advanced knowledge, but not overly specialized
 - Most useful degree for most cases
- PhD
 - Specialized
 - Good for those interested in more advanced, more interesting work
 - Necessary for academic or R&D careers

Graduate school?

Earnings and unemployment rates by educational attainment, 2015

Note: Data are for persons age 25 and over. Earnings are for full-time wage and salary workers. Source: U.S. Bureau of Labor Statistics, Current Population Survey

Knowledge is power --- Francis Bacon

Courses

• EEE 434 – Quantum Mechanics for Engineers

Basic physics describing the behavior of electrons and atoms Quantum world is fascinating!

EEE 435 – Fundamentals of CMOS and MEMS

Fabrication of semiconductor devices/circuits. The building block of electronics!

EEE 436 – Fundamentals of Solid State Devices

Introduces the physics of the most common semiconductor devices, *i.e.*, how do these device work. *Important physics!*

♦ EEE 437 – Optoelectronics

Light emitting/detecting devices (lasers, LEDs photodetectors, solar cells etc.) *Emerging technologies!*

EEE 439 – Semicond. Facilities/Cleanroom Practices

- Facilities/cleanrooms to make semiconductors Manufacturing is the king!
- EEE 465 Photovoltaic Energy Conversion
 - The science, manufacturing and economics of producing electricity from solar energy Sustainability is the future!

