Communications and Signal Processing

Prof. Daniel Bliss

School of Electrical Computer and Energy Engineering (ECEE)

ecee.engineering.asu.edu/academics/

What is Signal Processing?

iPhone DSP apps

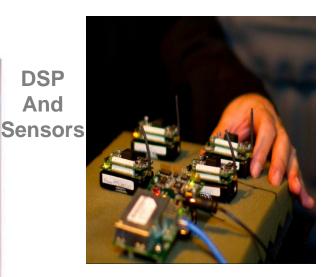
Video Compression

Biometric ID Verification

Array Signal Processing

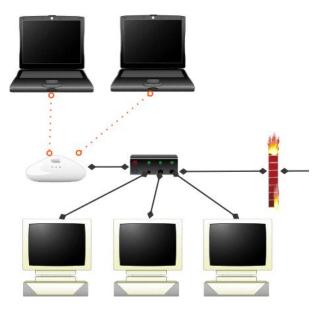
Biomedical Signal Processing?

DSP for Speech **And Hearing**



DSP for Health **Monitoring**

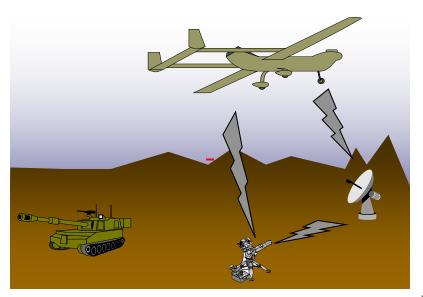
Hyper-spectral **Imaging**


DSP And

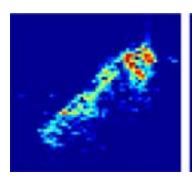
DNA Sequence **Analysis** using DSP Methods

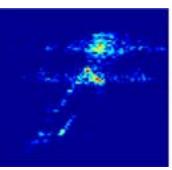
What is Communication?

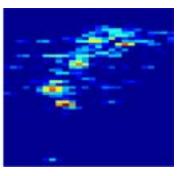
Data Networking


Cellular Telephony

Satellite Communications

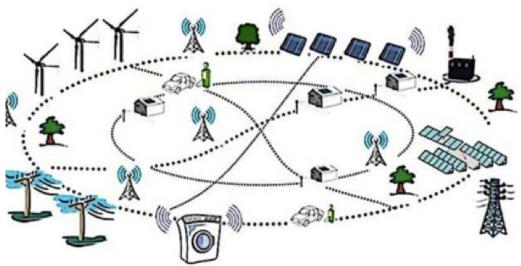

Military Applications ...



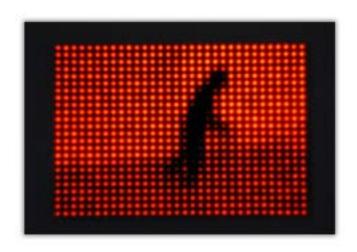


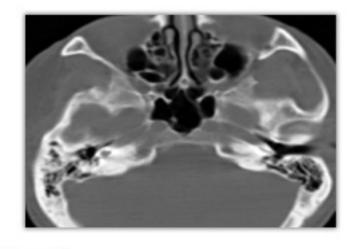
Automatic Target Recognition

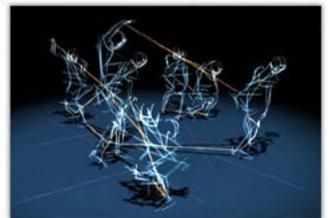
Sensor Networks



Target Imaging


Smart Grid Network Applications...





... to Applications in the Arts

Ambiguous Icons

Body Sensing Technologies

Interactive Performance

AME Concentration

COURSES Junior Level "Lead-in" Courses

- EEE 203 Signals and Systems I
 - Introduction to linear systems and Fourier transform analysis
- EEE 304 Signals and Systems II
 - Theory and Applications of linear systems in Communications, Controls, and Signal Processing
- EEE 350 Random Signal Theory
 - Introduction to probability and stochastic processes
- EEE 203 and 350 are representative of the things you need to know
- They are prerequisites to some senior level courses

COURSESSenior Electives

- EEE 407 Digital Signal Processing
 - Fundamentals of digital signal processing-time and frequency domain analysis, FFT, filter design
- EEE 455 Communications Systems
 - Fundamentals of communication systems-digital and analog modulation, receiver design, noise
- EEE 459 Communications Networks
 - Communications network architectures, transmission protocols, seven-layer OSI stack
- EEE 404 Real Time DSP
 - Usually students will take after EEE 304 or 407
 - Course covers programming of DSP algorithms

Sample MSE Plan of Study Signal Processing

Proposed Graduate Program

+‡+						
		Course	Course Title	Semester Hours	Semester/Year	Grade
		Number				
1	l	EEE 591	DIGITAL SIGNAL	3	FALL	
			PROCESSING			
2	2	EEE 591	COMMUNICATION	3	FALL	
			SYSTEMS			
3	}	EEE 554	RANDOM SIGNAL	3	FALL	
			THEORY			
4	1	EEE 506	DIGITAL SPECTRAL	3	SPRING	
			ANALYSIS			
5	5	EEE 552	DIGITAL	3	SPRING	
			COMMUNICATIONS	_		
6	5	EEE 508	IMAGE/VIDEO CODING	3	SPRING	
7	7	EEE507	MULTI-D SIGNAL PROC	3	FALL	
8	3	EEE 505	TIME FREQUENCY SP	3	FALL	
9)	EEE 606	ADAPTIVE SIGNAL PROC	3	FALL	
1	0	EEE 607	SPEECH CODING	3	SPRING	

Sample MSE Plan of Study Communications/Networks

Proposed Graduate Program

	Course	Course Title	Semester Hours	Semester/Year	Grade
	Number				
1	EEE 591	Communication Networks	3	FALL	
2	EEE 591	Communication Systems	3	FALL	
3	EEE 554	Random Signal Theory	3	FALL	
4	EEE 551	Information Theory	3	SPRING	
5	EEE 552	Digital Communications	3	SPRING	
6	EEE 553	Coding and Cryptography	3	SPRING	
7	EEE 557	Broadband Networks	3	FALL	
8	EEE 558	Wireless Commounications	3	FALL	
9	EEE556	Detection and Estimation	3	FALL	
10	EEE 598	Wireless Networks	3	Spring	

Direct Ph.D. POS

Direct Includes

- 30 hours of MS level courses
- +18 hours for PhD level courses
- +Research Credits
- +Dissertation Credits

Career Opportunities

What do signal processing and communications engineers do?

- Signal Enhancement: noise reduction, music and image restoration, high resolution imaging
- Signal Compression: speech, image, video, biomedical data
- Pattern Recognition: speech recognition, biometric identification, target recognition, machine learning
- Cellular Systems: system design, performance analysis, equipment design and manufacturing
- Satellite and Terrestrial Microwave Systems: modem design and implementation, system design, performance analysis
- Networking: network design and implementation, Network security, equipment design and manufacturing.
- Algorithm Design: software and hardware implementations, data mining
- Hardware Design: architectures, DSP chips, application specific IC's

Career Opportunities

Some Potential Employers

Motorola AT&T Qualcomm Intel

Medtronics Raytheon Cisco Xerox

MRC HP Agilent Lucent

Nokia Samsung Lockheed Martin

IBM Texas Instruments Boeing

Qwest General Dynamics Spectrum Astro

Freescale National Instruments Broadcom

EF Data LG Electronics Sprint

Covernment Universities

Government Universities

Graduate School

- Communication and signal processing fields are advancing rapidly
- Companies are looking increasingly towards MS and PhD holders to lead their development teams
 - BS just doesn't provide enough expertise

Ph.D. Degrees

Demand has increased considerably for Ph.D.

- Careers in academia
- Careers in Industry Research Labs
- Careers in Government Labs (graduates in big demand)
- Entrepreneurs

Graduate Classes

- Digital Communications
- Wireless Networks / Wireless Communications
- Broadband Networks
- Network Security
- Motion Capture
- Spectral Estimation and Array Processing
- Coding and Cryptography / Information Theory
- Multidimensional Signal Processing
- Image and Video Processing
- Speech and Audio Processing
- Time-Frequency Analysis
- Filtering of Stochastic Processes
- Detection and Estimation
- Adaptive Filters for Equalization and Echo Cancellation
- Multimedia Signal Processing
- Signal Processing for the Arts
- Array Processing
- Big Data

Faculty

Anna Scaglione, Signal Processing for Communications Networks

Chaitali Chakrabarti, Low Power Architectures

Lalitha Sankar, Networks, Optical Networks

Dan Bliss, Communications, Radar, Biomedical, Sensor Arrays

Andreas Spanias, DSP, Speech/Audio Processing, Sensor Arrays

Douglas Cochran, Signal Analysis, Sensor Networks

Lina Karam, Image/Video Processing and Coding

Oliver Kosut, Information Theory, Sensor Networks

Lei Ying, Wireless Networks, Big Data

Yanchao Zhang, Network Security

Visar Berisha, Speech Processing, Machine Learning

Tolga Duman, Wireless Communications, Turbo Codes

Pavan Turaga, Motion Estimation

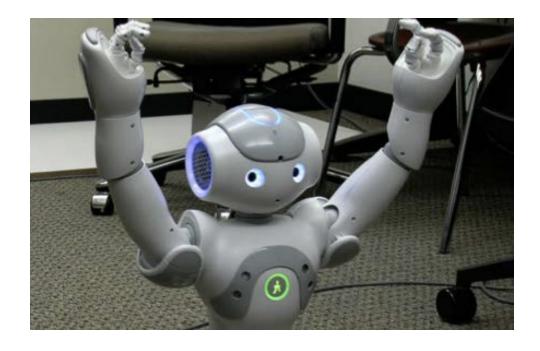
Martin Reisslein, Networks for streaming data and media

Antonia Papandreou-Suppappola, Sensors, Time-Frequency Representations

Cihan Tepedelenlioglu, Signal Processing for Communications, Multicarrier

Junshan Zhang, Information Theory, Ad-Hoc Networks

David Frakes, Bioengineering, Imaging


Programmatic Collaborations

- Co-advisement for M-disciplinary dissertations
- Sensor Signal and Information Processing (NSF Industry-University Center)
- Arts Media and Engineering (Concentration)
- Certificate in Sensors and Signal Processing
- Global Security Initiative (GSI)
- Biodesign Institute
- School of Sustainability

Questions?

