Course Topics

EEE 598: Advanced Device Modeling

Prerequisites: EEE EEE434, EEE 534 or instructor approval

Catalog Course Description: Understanding semi-classical and quantum transport theory and device simulations

Course Topics:

Review of semiconductor physics and transport

- o Semiconductor physics basic concepts
- o Review of drift-diffusion model
- o Hydrodynamic model

The BTE and its solution

- o Introduction of the BTE
- o Derivation of the Fermi's Golden Rule
- o Scattering mechanisms description
- o Low-field and high-field transport characteristics calculation (Rode's Iterative Method)
- o Single particle Monte Carlo description
- o Ensemble Monte Carlo method
- o Simulation examples

Solving the Poisson and the Maxwell's equations

- Field equations Numerical solution techniques: finite difference in 1D-3D, direct vs. iterative methods, rate of convergence estimate, mesh generation, boundary conditions
- o The multi-grid method
- o Description of the Conjugate Gradient Methods
- o Solution of the Maxwell Equations

Particle-Based device simulator

- o Stability Criteria for time-step and mesh-size
- o Particle dynamics with boundary conditions (modeling of the ohmic and Schottky contacts, artificial boundaries)
- o Particle-mesh coupling techniques (NGP, NEC, CIC, etc.)
- o Current calculation techniques

Examples of device modeling

- o Si MESFET Simulations (Tarik Khan)
- o SiGe devices Full-Band Simulations (Santhosh Krishnan)
- o FINFETs (Hasanur Rahman Khan)

Advanced Topics

- o Many-Body Effects: Molecular Dynamics, P3M approach, Corrected Coulomb approach, FMM, application in device simulators
- o Quantum corrections to semi-classical approaches:
 - Density Gradient Method
 - Quantum Corrected Hydrodynamics

- Effective potential approach used in conjunction with particle-based device simulators

Quantum Simulation

- o Schrodinger Equation
 - General Notation
 - Stationary States for a Free Particle
 - Bulk dispersion
- o Discretized Schrodinger Equation
 - Method
 - Bulk dispersion
 - Comparison between continuum and discretized bandstructure
- o Realistic Semiconductor Bandstructure Models
 - Atomic cores impose a potential on the electrons
 - Pseudopotential method
 - k.p method method and treatment of strain
 - Tight binding method and treatment of strain

Quantum Transport in a single band - Non-interacting Systems

- o Tunneling Theory Continuum Semi-Analytical Method
 - Current operator
- o Landauer Approach
 - Current expression
 - Charge expression
- o Numerical Instability of Transfer Matrix Approach
- o Physical Limitations of the Semi-analytical Tunneling Approach
 - different effective masses,
 - transverse momentum
 - finite bandwidth of a realistic semiconductor band
- o Tunneling Theory Discretized Numerical Method
 - Single Band, Single Effective Mass
 - QTBM method
 - Direct solution of the Schrodinger Equation through LU
 - Current and charge expressions via Landauer approach
- Non-Equilibrium Transport
 - o Mixed States and Distribution Function
 - o Irreversible Processes and MASTER Equations
 - o Green's Functions Approach
 - Second Quantization of Particles
 - Single particle and two-particle operators
 - Schrodinger, Heisenberg and Interaction representation
 - Wicks Theorem
 - Feynman Diagrams and the partial summation method for the self energy
 - Dyson Equation
 - Definition of the six Green's functions
 - Ballistic approaches for solving the Green's Function problem in devices

- A. Recursive Green's function Approach
- B. Contact Block Reduction method

Assignments:

- 1. Scattering rates derivation /10
- 2. Scattering Table Construction /10
- 3. EMC for Bulk GaAs /30
- 4. Poisson 2D Implementation/15
- 5. Modeling of GaAs MESFETs /35