Course Topics

EEE 598: Power Plant Control & Monitoring

Prerequisites: Graduate Engineering student

Course Description:
This class deals with the Dynamics, Control, and Operations of Electric Power Systems. The perspective is that of the relationships between load and generation; transmission details are referred to when needed but are not a primary aspect of the discussion. Practical aspects of power system operation and the analytical processes used in modeling the power system will be woven together throughout the class.

Course Topics:
Basic aspects of dynamic simulation of large power systems
 Technique and economics of computation
 Network solutions
 Stability of numerical integration
 Selection of state variables
Fundamentals of stability / control system design
 Control system elements - physical aspects - hydraulic/electrical/mechanical
 - mathematical aspects
 Design of feedback loops (in power plant context)
Characteristics of power system elements
 Synchronous machines - synchronizing and damping torques
 - characteristic reactances
 - operational issues - operating limits - protection
 - generator controls
 Induction machines - electrical details - driven loads
Reactive power control elements
Real power control/energy storage elements
Characteristics of power system loads
 Traditional load representations
 Evolving load properties - air conditioning
 - electronic motor drives - constant / adjustable speed
Power plant characteristics
 Steam plants - turbine dynamics - boiler configurations, dynamics, controls
 Gas turbines - control fundamentals
 - operational limits, constraints - emission controls
 Combined cycle plants - configuration - operation - dynamic characteristics
 Hydro plants - dynamic characteristics - operational aspects
 Renewable resource plants - wind - solar
 Electronic coupling of generation to the grid
Power system control
 Primary and secondary control concepts
 Scope and scale of control - time scale - geographic scale - voltage level scale
Control of interconnected power systems
 Control of frequency
 Control of real power flows
 - net interchange control
 - frequency bias

Equipment testing and data management
 Test techniques
 Collection and validation of modeling data
 Validation of simulation results